A fragment of a
fossilised bone thought to be more than 700,000 years old has yielded
the genome of an ancient relative of modern-day horses.
This predates all previous ancient DNA sequences by more than 500,000 years.
The
study in the journal Nature was made possible because the bone was found preserved in Canadian permafrost following the animal's demise.
The study also suggested that the ancestor of all equines existed around four million years ago.
A remnant of the long bone of an ancient horse was recovered
from the Thistle Creek site, located in the west-central Yukon Territory
of Canada.
Palaeontologists estimated that the horse had last roamed the
region sometime between a half to three-quarters of a million years
ago.
An initial analysis of the bone showed that despite previous
periods of thawing during inter-glacial warm periods, it still harboured
biological materials - connective tissue and blood-clotting proteins -
that are normally absent from this type of ancient material.
DNA puzzle
And this finding was significant as study co-author of the
paper, Dr Ludovic Orlando from the University of Copenhagen, explained
to the
BBC World Service programme Science in Action.
Continue reading the main story
“Start Quote
You would be amazed how much material
of this kind is actually out there... museums are full of fossil
material from all over the planet”
Keith Dobney
University of Aberdeen
"We were really excited because it meant that the preservation was really good," he told the BBC.
"So at that stage we thought, let's try a DNA extraction to see how much of the genome we could characterise."
The multi-national team of researchers pulverised a fragment
of the bone to recover its DNA, then subjected it to high-throughput,
next-generation gene sequencing to unravel the blueprint of this
antediluvian mount.
The first approach they tried resulted in relatively poor
yields of horse-derived sequences, so they turned to a technology that
could directly analyse single molecules of DNA.
This proved far more successful - but they still had an abundance of data to plough through.
Using high-powered computers and an existing horse genome
sequence as a reference, the scientists sifted through the 12 billion
sequencing reads to distinguish between DNA motifs belonging to the
ancient horse and those from contaminating organisms, such as bacteria
accumulated from the environment.
Przewalski's horse, once extinct in the wild, is viewed as the only remaining truly wild horse
From the resulting equine DNA fragments, they reconstructed a
draft of its genome. Although the derived sequence data only covered
around 70% of the entire genome, this was sufficient foundation for some
revealing analyses.
The tell-tale presence of Y chromosome markers showed that the Thistle Creek bone had belonged to a male.
But the DNA also enabled them to reconstruct the evolutionary history of the larger
Equus genus, which includes modern-day horses and zebras.
To do this, the scientists also determined the DNA sequence
of a donkey, an ancient pre-domestication horse dating back around
43,000 years, five modern horses and a Przewalski's horse, which
possibly represents the last surviving truly wild horse population.
Family trees, based on similarity of the DNA sequences,
revealed the relationships between these equine stable-mates and their
longer evolutionary history.
Heirs and grazes
The Thistle Creek genome was reassuringly ancestral to the modern horses - positioned as it was at the base of the tree.
Geological dating evidence meant that the researchers could
calibrate the rate of evolution in the different branches, and from this
look back into the depths of the tree to approximate the age of the
Equus genus ancestor - the forerunner to the donkey, zebra and horse.
DNA was extracted from pieces of the ancient bone
The results suggested it grazed the grasslands between 4 and
4.5 million years ago - twice as long ago as most previous estimates.
Through surveying sequence diversity in a larger number of
domestic and Przewalki's horse samples- by looking in the genes for what
are known as single nucleotide polymorphisms or SNPs - past population
sizes could be modelled.
Over the last two million years horses had experienced
significant population expansions and collapses associated with climatic
changes, and one collapse coincided with the date when the Thistle
Creek and modern horses diverged.
The location of the genetic differences between the ancient
and modern horses also provided tantalising clues into some of the
possible consequences of these genetic differences, as Dr Orlando
explained to the BBC.
"Once you have the genome, one thing you can do is to
actually look at different genes that we know today are important for
different traits.
"What we've learned for example the alleles that prime to the
racing performance in domestics were not present at that time, for
example."
Commenting on the wider implications of the study, co-author
Eske Willerslev of the University of Copenhagen said: "Pushing back the
time barrier is important because it has implications for our
evolutionary understanding of anything from hominins to other animals,
because we can look further back in time than people have done
previously."
Palaeoecologist Keith Dobney from the University of Aberdeen echoed the sentiment.
"There were many things we said
wouldn't be possible in ancient DNA [studies] not that long ago, until
next generation sequencing came along and all of a sudden everything has
changed, and I mean everything," he said.
Modern sequencing approaches and better fossil specimens will
allow scientists to gaze further and further back into the mists of
ancient evolution, and Prof Dobney said that procuring samples for
future studies should not be a problem.
"You would be amazed how much material of this kind is actually out there.
"Museums are full of fossil material from all over the
planet, caves are fantastic stable environments for preservation and
some of the best preserved DNA has come out of cave deposits," he said.
But would we recognise the
Equus ancestor as a horse?
"Even if you look at the Przewalski horse, which has a
divergence time of only about 50,000 years ago... and compare it to the
domestic horse, you can already see differences," observed Prof
Willerslev.
"I would definitely say it would not look like a horse as we know it… but we would expect it to be a one-toed horse."
Ludovic Orlando was speaking to the BBC World Service programme
Science in Action, which will air first 18:32 GMT on Thursday 27 June, and will be available on iPlayer and as a
downloadable podcast.
0 comments:
Post a Comment